
This article intends to prove the well known facts about bivariate normal distribution. I mainly refered to
the book “DeGroot, Probability and Statistics, 4ed” and https://statproofbook.github.io.

1 main definition and theorems

Theorem 3.9.5 : bivariate transformation of PDF

Let U and V be random variables with joint PDF fUV (u, v). Suppose there is a set S ⊂ R2 such that
P ((u, v) ∈ S) = 1 and a differentiable injective function r of S into R2 Denoting T = r(S), r is a one to
one correspondence between S and T . Let s be the inverse s = r−1 of r and denote{

x = r1(u, v)

y = r2(u, v)
,

{
u = s1(x, y)

v = s2(x, y)

Then, the joint PDF fXY (x, y) of two random variables X = r1(U, V ) and Y = r2(U, V ) is given by

fXY (x, y) =

{
fUV (s1(x, y), s2(x, y))× |J | (x, y) ∈ T

0 (otherwise)

where

J = det

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y


There is no proof in the book and we regard it as true.

Example 3.9.9

Let U and V be random variables such that

fUV (u, v) =

{
4uv 0 < u, v < 1

0. (otherwise)

For random variables X and Y defined by X = U
V and Y = UV , find the PDF fXY (x, y).

Let S = (0, 1)2 = {(u, v) ∈ R2 : 0 < u, v < 1}. Then,

P ((u, v) ∈ S) =

∫∫
S

fUV (u, v) du dv

=

∫ 1

0

∫ 1

0

4uv du dv

= 1.

Let r1 and r2 be functions on S defined by

x = r1(u, v) =
u

v
y = r2(u, v) = uv

(∗)

The function r on S defined by r(u, v) = (r1(u, v), r2(u, v)) is differentiable on S. It is also injective ; if(
u1

v1
, u1v1

)
=
(

u2

v2
, u2v2

)
, then

u1
2 =

(
u1

v1

)
× (u1v1) =

(
u2

v2

)
× (u2v2) = u2

2

v1
2 =

(
u1

v1

)
÷ (u1v1) =

(
u2

v2

)
÷ (u2v2) = v2

2

that is, (u1, v1) = (u2, v2) if r(u1, v1) = r(u2, v2).
Let T = r(S). Then r : S → T is bijective. To find its inverse s, we can make use of (∗) to get

u = s1(x, y) =
√
xy

v = s2(x, y) =

√
y

x
.
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Now we find T .

(x, y) ∈ T ⇐⇒ (s1(x, y), x2(x, y)) ∈ S

⇐⇒ (u, v) ∈ S

⇐⇒ 0 < u < 1 & 0 < v < 1

⇐⇒ 0 <
√
xy < 1 & 0 <

√
y

x
< 1

⇐⇒ x > 0 & y > 0 & y <
1

x
& y < x

⇐⇒ 0 < y < min

(
x,

1

x

)
,

T =

{
(x, y) ∈ R2 : 0 < y < min

(
x,

1

x

)}
Finally, evaluate |J |

|J | = det

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y


=

∣∣∣∣∣∣∣
1
2

√
y
x

1
2

√
x
y

− 1
2

√
y
x3

1
2

√
1
xy

∣∣∣∣∣∣∣
=

1

2x
.

Therefore,

fXY (x, y) =

{
fUV

(√
xy,
√

y
x

)
(x, y) ∈ T

0 (otherwise)

=

{
4y 0 < y < min

(
x, 1

x

)
0 (otherwise).

Theorem 5.10.1

Suppose that U, V ∼ N(0, 1) are independent. Let µX , µY ∈ R, σX , σY > 0 and −1 < ρ < 1. Let X and
Y be random variables defined by

X = σXU + µX

Y = σY

[
ρU +

√
1− ρ2V

]
+ µY

Then, the joint PDF of X and Y is given by

fX,Y (x, y) =
1

2π
√
1− ρ2σXσY

exp

{
− 1

2(1− ρ2)

[(
x− µX

σX

)2

−2ρ

(
x− µX

σX

)(
y − µY

σY

)
+

(
y − µY

σY

)2]}

Since U and V are standard normal and independent, the joint PDF of U and V is

fUV (u, v) = fU (u)fV (v)

=
1√
2π

exp

(
−1

2
u2

)
× 1√

2π
exp

(
−1

2
v2
)

=
1

2π
exp

{
−1

2
(u2 + v2)

}
And, P

(
(u, v) ∈ R2

)
= 1 since
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P
(
(u, v) ∈ R2

)
=

∫∫
R2

fUV (u, v) du dv

=

∫
R
fU (u) du×

∫
R
fV (v) dv

= 1

A differentiable function r : R2 → R2 such that r(u, v) = (r1(u, v), r2(u, v)) is given by

x = r1(u, v) = σXu+ µX

y = r2(u, v) = σY

[
ρu+

√
1− ρ2v

]
+ µY

It has s as its inverse where s(x, y) = (s1(x, y), s2(x, y)) and r is invertible ;

u = s1(x, y) =
x− µX

σX

v = s2(x, y) =
1√

1− ρ2

(
y − µY

σY
− ρ

x− µX

σX

)
The jacobian J = ∂(u,v)

∂(x,y) is given by

J =

∣∣∣∣∣∣
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1

σX
0

ρ

σX

√
1−ρ2

1

σY

√
1−ρ2

∣∣∣∣∣∣
=

1

σXσY

√
1− ρ2

By theorem 3.9.5, the PDF of X and Y is given by

fXY (x, y) =fUV (s1(x, y), s2(x, y))× |J |

=
1

2π
exp

{
−1

2

[(
x− µX

σX

)2

+
1

1− ρ2

(
y − µY

σY
− ρ

x− µX

σX

)2
]}

× 1

σXσY

√
1− ρ2

=
1

2π
√
1− ρ2σXσY

exp

{
− 1

2(1− ρ2)

[(
x− µX

σX

)2

− 2ρ

(
x− µX

σX

)(
y − µY

σY

)
+

(
y − µY

σY

)2]}

Theorem 5.10.2(Main Theorem)

Suppose that X, Y are random variables where the PDF is given by

fX,Y (x, y) =
1

2π
√
1− ρ2σXσY

exp

{
− 1

2(1− ρ2)

[(
x− µX

σX

)2

−2ρ

(
x− µX

σX

)(
y − µY

σY

)
+

(
y − µY

σY

)2]}
.

Then,

(a) the random variables U and V given by

U =
X − µX

σX

V =
1√

1− ρ2

(
Y − µY

σY
− ρ

x− µX

σX

)
are independent and standard normal.

(b) X ∼ N(µX , σX
2), Y ∼ N(µY , σY

2), ρXY = ρ.
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We prove (a) only. The proof of (b) depends on the notion of moment generating function and is discussed
in section 2. To prove (a), we first evaluate the function fUV (u, v), where we apply 3.9.5 in the reverse order.
Since

x = σXu+ µX

y = σY

(
ρu+

√
1− ρ2v

)
+ µY ,

the jacobian J = ∂(x,y)
∂(u,v) is given by

J =

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣
=

∣∣∣∣∣∣
σX 0

ρσY σY

√
1− ρ2

∣∣∣∣∣∣
= σXσY

√
1− ρ2.

Now, by theorem 3.9.5,

fUV (u, v) =fXY

(
σXu+ µX , σY

(
ρu+

√
1− ρ2v

)
+ µY

)
× |J |

=
1

2π
√

1− ρ2σXσY

exp

{
− 1

2(1− ρ2)

[(
x− µX

σX

)2

− 2ρ

(
x− µX

σX

)(
y − µY

σY

)

+

(
y − µY

σY

)2]}
× σXσY

√
1− ρ2

=
1

2π
exp

{
− 1

2(1− ρ2)

[
u2 − 2ρu(ρu+

√
1− ρ2v) + (ρu+

√
1− ρ2v)2

]}

=
1

2π
exp

{
− 1

2(1− ρ2)

[
u2 − ρu2 + (1− ρ2)v2

]}

=
1

2π
exp

{
−1

2
(u2 + v2)

}

Integrating with respect to v yields the marginal distribution fU (u).

fV (v) =

∫
R
fUV (u, v) dv

=
e−

1
2u

2

2π

∫
R
e−

1
2 v

2

dv

⋆
=

e−
1
2u

2

2π
×
√
2π

=
1√
2π

e−
1
2u

2

where ⋆ can be justified by (∫
R
e−

1
2 v

2

dv

)2

=

∫∫
R2

e−
1
2 (v1

2+v2
2) dv1 dv2

=

∫ 2π

0

∫ ∞

0

e−
1
2 r

2

dr dθ

= 2π

∫ ∞

0

e−R dR

= 2π.

Similarly,

fV (v) =
1√
2π

e−
1
2v

2

.

Thus, U and V are standard normal. Furthermore, since fUV (u, v) = fU (u)fV (v), U and V are independent.
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Definition 5.10.1 : bivariate normal distributions

If random variables X and Y have

fX,Y (x, y) =
1

2π
√
1− ρ2σXσY

exp

{
− 1

2(1− ρ2)

[(
x− µX

σX

)2

−2ρ

(
x− µX

σX

)(
y − µY

σY

)
+

(
y − µY

σY

)2]}
.

as PDF, X and Y is said to have the bivariate normal distributions with means µX and µY , variances σX
2

and σY
2, and correlation coefficient ρ.

2 remaining proof using moment generating functions

4.4.2 Definition and 4.4.2 Theorem : moment genrating functions

Let X be a random variable and let
MX(t) = E[etX ]

for each t ∈ R, where the value is well defined. The function MX is called the moment generating function
of X. Then,

MX
(n)(0) = E[Xn]

where the superscript (n) is n-times derivative and n is a positive integer.

The proof introduced here depends on infinite sum of random variable, where the convergence is just assumed
to be guaranteed. By the Maclaurin series of the exponential function and the linearity of E,

MX(t) = E
[
etX
]

= E

[
1 + tX +

t2X2

2!
+

t3X3

3!
+ · · ·

]
= 1 + tE[X] +

t2

2!
E[X2] +

t3

3!
E[X3] + · · ·

Then,

M ′
X(t) = E[X] + tE[X2] +

t2

2!
E[X3] +

t3

3!
E[X4] + · · ·

M ′′
X(t) = E[X2] + tE[X3] +

t2

2!
E[X4] +

t3

3!
E[X5] + · · ·

...

M
(n)
X (t) = E[Xn] + tE[Xn+1] +

t2

2!
E[Xn+2] +

t3

3!
E[Xn+3] + · · · .

It follows that
M

(n)
X (0) = E[Xn].

Example 4.4.3 If we use the above theorem to the exponential distribution,

fX(x) = λe−λx, x > 0

MX(t) = E
[
etX
]

=

∫ ∞

0

etx · λe−λx dx

= λ

∫ ∞

0

e(t−λ)x dx

= λ

[
1

λ− t
e(t−λ)x

]∞
0

=
λ

λ− t
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provided that t < λ. Thus,

E[X] = M ′
X(0) =

λ

(λ− t)2

∣∣∣∣
t=0

=
1

λ

E[X2] = M ′′
X(0) =

2λ

(λ− t)3

∣∣∣∣
t=0

=
2

λ2

V [X] =
1

λ2

4.2.6 Theorem and 4.4.4 Theorem : multiplicative properties

Let X and Y be independent random variables. Then,

(a) E[XY ] = E[X]E[Y ]

(b) MX+Y (t) = MX(t)×MY (t)

The proof of (b) below depends on the fact that functions of independent variables are also independent ;

(a) E[XY ] =

∫∫
R2

xyfXY (x, y) dx dy

=

∫∫
R2

xyfX(x)fY (y) dx dy

=

∫
R
xfX(x)dx×

∫
R
yfY (y)dy

= E[X]E[Y ]

(b) MX+Y (t) = E
[
et(X+Y )

]
= E

[
etX × etY

]
= E

[
etX
]
×
[
etY
]

= MX(t)×MY (t)

5.6.2 Theorem / 5.6.7 Theorem / 5.6.1. Corollary

(a) X ∼ N(µ, σ2) if and only if MX(t) = exp
(
µt+ 1

2σ
2t2
)

(b) If X ∼ N(µX , σX
2) and Y ∼ N(µY , σY

2) are independent, then

aX + bY + c ∼ N
(
aµX + bµY + c, a2σX

2 + b2σY
2
)
.

(a) Suppose the former. Then

MX(t) = E[etX ]

=

∫
R
etx × 1√

2πσ
exp

(
−
(
x− µ√

2σ

)2
)

dx

=
1√
2πσ

∫
R
exp

(
tx−

(
x− µ√

2σ

)2
)

dx.

Let u = x−µ√
2σ

so that dx =
√
2σ du. Thus

MX(t) =
1√
2πσ

∫
R
exp

(
t(µ+

√
2σu)− u2

)
×
√
2σ du.

=
eµt√
π

∫
R
exp

(√
2σtu− u2

)
du.

=
eµt√
π

∫
R
exp

(
−
(
u− σt√

2

)2

+
σ2t2

2

)
du.
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Substitute again, u− σt√
2
by v, it becomes

MX(t) =
eµt+

1
2σ

2t2

√
π

∫
R
exp

(
−v2

)
du

∗
=

eµt+
1
2σ

2t2

√
π

×
√
π

= eµt+
1
2σ

2t2 .

as desired. (∗) is because of the usual double integral and coordinate change.
The converse part of (a) can be justified by 4.4.5 Theorem, which state that the moment generating function

of a distribution is unique. That is, if Y satisfies MY (t) = exp
(
µt+ 1

2σ
2t2
)
, then MX = MY and X = Y . It

follows that Y ∼ N(µ, σ2). That uniqueness theorem is said to be proved using graduate level tools such as
probability measures.

(b) By the multiplicative propertiy of moment generating function and the only if part of (a),

MaX+bY+c(t) = MX(at)×MY (bt)×M)c(t)

= exp

(
µX(at) +

1

2
σX

2(at)2
)
× exp

(
µY (bt) +

1

2
σY

2(bt)2
)
× exp(ct)

= exp

(
(aµX + bµY + c)t+

1

2

(
a2σX

2 + b2σY
2
)
t2
)

By the if part of (a), aX + bY + c has normal distribution of mean aµX + bµY + c and variance a2µX
2 + b2µY

2.

Proof of the main theorem (5.10.2) (b)

Proof. Since X = σXU + µX and U ∼ N(0, 1), X follows a normal distribution with mean

E[X] = σX × 0 + µX = µX

and variance
V [X] = σX

2 × 12 = σX
2.

And, since Y = σY

(
ρU +

√
1− ρ2V

)
+ µY , Y follows a normal distribution with mean

E[Y ] = σY ρ× 0 + σY

√
1− ρ2 × 0 + µY = µY

and variance
V [Y ] = σY

2ρ2 × 12 + σY
2(1− ρ2)× 12 = σY

2.

To prove ρXY = ρ, let’s prove the bilinearity of Cov. Since

Cov(aX + bY, Z) = E [((aX + bY )− (aµX + bµY )) (z − µZ)]

= E [(a(X − µX) + b(Y − µY )) (z − µZ)]

= E [a(X − µX)(z − µZ) + b(Y − µY )(z − µZ)]

= aE [(X − µX)(z − µZ)] + bE [(Y − µY )(z − µZ)]

= aCov(X,Z) + bCov(Y, Z),

Cov is linear with respect to the first coordinate. Similarly, it is linear with respect to the second coordinate,
and Cov is binlinear. Moreover, Cov(X + c, Y ) = Cov(X,Y ) if c is a constant, since

Cov(X + c, Y ) = E [((X + c)− (µX + c)) (Y − µY )]

= E [(X − µX)(Y − µY )]

= Cov(X,Y ).

Similarly, Cov(X,Y + c) = Cov(X,Y ).
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Therefore,

Cov(X,Y ) = Cov
(
σXU + µX , σY ρU + σY

√
1− ρ2V + µY

)
= Cov

(
σXU, σY ρU + σY

√
1− ρ2V

)
= Cov (σXU, σY ρU) + Cov

(
σXU, σY

√
1− ρ2V

)
= σXσY ρCov (U,U) + σXσY

√
1− ρ2Cov (U, V )

= σXσY ρ× 1 + σXσY

√
1− ρ2 × 0

= σXσY ρ

and ρXY = ρ.
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